doi: 10.7744/KJOAS.20190068


River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam

  • Le,Xuan-Hien,
  • Ho,Hung Viet,
  • Lee,Giha

피인용문헌(Cited by)

  • . "Deep neural network-based discharge prediction for upstream hydrological stations: a comparative study" Earth science informatics, vol. 16(4), p.3113-. 2023. doi:10.1007/s12145-023-01082-9
  • . "Towards an efficient streamflow forecasting method for event-scales in Ca River basin, Vietnam" Journal of Hydrology : Regional Studies, vol. 46 p.101328-. 2023. doi:10.1016/j.ejrh.2023.101328
  • . "Comparison of Deep Learning Techniques for River Streamflow Forecasting" IEEE access : practical research, open solutions, vol. 9 p.71805-. 2021. doi:10.1109/ACCESS.2021.3077703
  • . "Streamflow Prediction in the Mekong River Basin Using Deep Neural Networks" IEEE access : practical research, open solutions, vol. 11 p.97930-. 2023. doi:10.1109/ACCESS.2023.3301153
  • . "Water Level Forecasting Using Deep Learning Time-Series Analysis: A Case Study of Red River of the North" Water, vol. 14(12), p.1971-. 2022. doi:10.3390/w14121971
  • . "CMIP5 기반 하천유량 예측을 위한 딥러닝 LSTM 모형의 최적 학습기간 산정" 한국농공학회논문집, vol. 64(1), p.39-. 2022. doi:10.5389/KSAE.2022.64.1.039
  • . "Analysis of future flood inundation change in the Tonle Sap basin under a climate change scenario" Korean journal of agricultural science, vol. 48(3), p.433-. 2021. doi:10.7744/kjoas.20210033