River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam
-
Le,Xuan-Hien,
-
Ho,Hung Viet,
-
Lee,Giha
피인용문헌(Cited by)
- .
"Deep neural network-based discharge prediction for upstream hydrological stations: a comparative study"
Earth science informatics,
vol. 16(4),
p.3113-.
2023.
doi:10.1007/s12145-023-01082-9
- .
"Towards an efficient streamflow forecasting method for event-scales in Ca River basin, Vietnam"
Journal of Hydrology : Regional Studies,
vol. 46
p.101328-.
2023.
doi:10.1016/j.ejrh.2023.101328
- .
"Comparison of Deep Learning Techniques for River Streamflow Forecasting"
IEEE access : practical research, open solutions,
vol. 9
p.71805-.
2021.
doi:10.1109/ACCESS.2021.3077703
- .
"Streamflow Prediction in the Mekong River Basin Using Deep Neural Networks"
IEEE access : practical research, open solutions,
vol. 11
p.97930-.
2023.
doi:10.1109/ACCESS.2023.3301153
- .
"Water Level Forecasting Using Deep Learning Time-Series Analysis: A Case Study of Red River of the North"
Water,
vol. 14(12),
p.1971-.
2022.
doi:10.3390/w14121971
- .
"CMIP5 기반 하천유량 예측을 위한 딥러닝 LSTM 모형의 최적 학습기간 산정"
한국농공학회논문집,
vol. 64(1),
p.39-.
2022.
doi:10.5389/KSAE.2022.64.1.039
- .
"Analysis of future flood inundation change in the Tonle Sap basin under a climate change scenario"
Korean journal of agricultural science,
vol. 48(3),
p.433-.
2021.
doi:10.7744/kjoas.20210033