doi: 10.7744/KJOAS.20180085


Prediction of pollution loads in the Geum River upstream using the recurrent neural network algorithm

  • Lim,Heesung,
  • An,Hyunuk,
  • Kim,Haedo,
  • Lee,Jeaju

피인용문헌(Cited by)

  • . "Deterministic and Stochastic Principles to Convert Discrete Water Quality Data into Continuous Time Series" Water resources management, vol. 35(11), p.3633-. 2021. doi:10.1007/s11269-021-02908-1
  • . "Design of a Variable-Length Sequential Prediction Framework GTV-STP Based on Spatial and Temporal Water Quality Information of Taihu Lake" IEEE access : practical research, open solutions, vol. 12 p.65928-. 2024. doi:10.1109/ACCESS.2024.3398130
  • . "A Review of the Artificial Neural Network Models for Water Quality Prediction" Applied sciences, vol. 10(17), p.5776-. 2020. doi:10.3390/app10175776
  • . "The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa" International journal of environmental research and public health, vol. 18(10), p.5248-. 2021. doi:10.3390/ijerph18105248
  • . "Flood prediction in the Namgang Dam basin using a long short-term memory (LSTM) algorithm" Korean journal of agricultural science, vol. 47(3), p.471-. 2020. doi:10.7744/kjoas.20200036
  • . "Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea" Korean journal of agricultural science, vol. 47(4), p.1029-. 2020. doi:10.7744/kjoas.20200086
  • . "Prediction of pollution loads in agricultural reservoirs using LSTM algorithm: case study of reservoirs in Nonsan City" Korean journal of agricultural science, vol. 49(2), p.193-. 2022. doi:10.7744/kjoas.20220016